WELCOME

It is the tradition in Trinity College Dublin that newly appointed Professors are invited to give an inaugural lecture. This lecture represents the official recognition of their promotion to Professor, and the new holder provides an opportunity to showcase their achievements in research, innovation, engagement and teaching. It is delivered before an audience of members of the University community, invited stakeholders and the general public.

In Trinity College Dublin, inaugural lectures are a significant event in the academic staff career. They provide a platform for the new Professor to present their research and teaching activities, and to share their vision for the future.

The Faculty of Arts, Humanities and Social Sciences is proud to present the inaugural lecture of Professor Rhodri Cusack.

UNCOVERING THE HIDDEN FOUNDATIONS OF COGNITION IN INFANCY WITH NEUROIMAGING AND ARTIFICIAL INTELLIGENCE

TRINITY COLLEGE DUBLIN INAUGURAL LECTURE

Professor Rhodri Cusack
Professor of Cognitive Neuroscience, Trinity College Dublin
foundations of cognition in infancy. Research Council and Science Foundation Ireland, Going forward, with support from the European Research Council, we would like to uncover the hidden mechanisms behind language development.

Why do human infants behave so helplessly? The answer is that they are born early with immature brains. However, this does not mean that they are born helpless. Instead, we propose that there is a period of "infancy," which is longer in duration in human infants than in other species. This period is characterized by the inability to perform complex tasks such as driving a car or using a smartphone. Theories about learning in complex brains that mandates a slow learning period must "lie down before we can walk." But what might drive this process? Why are human infants so slow to develop? One theory is that many systems were mature from birth, which is inconsistent with the immature brain theory.

Why are human infants so slow to develop? One theory is that many systems were mature from birth, which is inconsistent with the immature brain theory.

About me

Professor Rhodri Cusack
Professor of Cognitive Neuroscience

ABOUT ME

Rhodri Cusack is the Thomas Mitchell Professor of Cognitive Neuroscience at Trinity College Dublin, and a Principal Investigator of the SFI Infant Brain Sciences Programme. He completed his PhD in psychology from the University of Birmingham. He was then a postdoctoral fellow and subsequently group leader at the Medical Research Council Cognition and Brain Sciences Unit in Cambridge, and then an Associate Professor of Cognitive Neuroscience at Western University in Canada. At Trinity College his research is supported by the Canadian Institutes of Health Research (CIHR), the European Research Council, the Irish Research Council, the Wellcome Trust, the National Institutes of Health (NIH), the Biotechnology and Biological Sciences Research Council, the Royal Society Wolfson Merit Award, the Royal Society University Research Fellowship, the Royal Society Research Fellowship, the Aventis Foundation, and the Brain Sciences Unit in Cambridge.

Biography

Professor Rhodri Cusack is a cognitive neuroscientist who studies how the brain develops. He is the Thomas Mitchell Professor of Cognitive Neuroscience at Trinity College Dublin and a Principal Investigator of the SFI Infant Brain Sciences Programme. He completed his PhD in psychology from the University of Birmingham in 1995. He was then a postdoctoral fellow and subsequently group leader at the Medical Research Council Cognition and Brain Sciences Unit in Cambridge, and then an Associate Professor of Cognitive Neuroscience at Western University in Canada. At Trinity College his research is supported by the Canadian Institutes of Health Research (CIHR), the European Research Council, the Wellcome Trust, the National Institutes of Health (NIH), the Biotechnology and Biological Sciences Research Council, the Royal Society Wolfson Merit Award, the Royal Society University Research Fellowship, the Royal Society Research Fellowship, the Aventis Foundation, and the Brain Sciences Unit in Cambridge.

Professor Cusack has published more than 100 peer-reviewed articles, and he collaborates with psychologists, physicists, and computer scientists. His team at Trinity uses neuroimaging in infants to study how the mind develops, to provide tools for earlier diagnosis in the neonatal intensive care unit and to inform the design of artificial neural networks. They have proposed frameworks on how to carve up cognition in tandem, there has been considerable theoretical progress in building conceptual models of the mind. Psychologists have reviewed publications and have given more than 150 invited presentations to psychology, developmental, and neuroscience conferences, including as a keynote speaker at major meetings in Japan, the US, and Europe, and more than 50 specialist workshops and departmental seminars.

His team at Trinity College uses neuroimaging in infants to study how the mind develops, to provide tools for earlier diagnosis in the neonatal intensive care unit and to inform the design of artificial neural networks. They have proposed frameworks on how to carve up cognition in building conceptual models of the mind. Psychologists have reviewed publications and have given more than 150 invited presentations to psychology, developmental, and neuroscience conferences, including as a keynote speaker at major meetings in Japan, the US, and Europe, and more than 50 specialist workshops and departmental seminars.

His team at Trinity College uses neuroimaging in infants to study how the mind develops, to provide tools for earlier diagnosis in the neonatal intensive care unit and to inform the design of artificial neural networks. They have proposed frameworks on how to carve up cognition in building conceptual models of the mind. Psychologists have reviewed publications and have given more than 150 invited presentations to psychology, developmental, and neuroscience conferences, including as a keynote speaker at major meetings in Japan, the US, and Europe, and more than 50 specialist workshops and departmental seminars.

His team at Trinity College uses neuroimaging in infants to study how the mind develops, to provide tools for earlier diagnosis in the neonatal intensive care unit and to inform the design of artificial neural networks. They have proposed frameworks on how to carve up cognition in building conceptual models of the mind. Psychologists have reviewed publications and have given more than 150 invited presentations to psychology, developmental, and neuroscience conferences, including as a keynote speaker at major meetings in Japan, the US, and Europe, and more than 50 specialist workshops and departmental seminars.

His team at Trinity College uses neuroimaging in infants to study how the mind develops, to provide tools for earlier diagnosis in the neonatal intensive care unit and to inform the design of artificial neural networks. They have proposed frameworks on how to carve up cognition in building conceptual models of the mind. Psychologists have reviewed publications and have given more than 150 invited presentations to psychology, developmental, and neuroscience conferences, including as a keynote speaker at major meetings in Japan, the US, and Europe, and more than 50 specialist workshops and departmental seminars.

His team at Trinity College uses neuroimaging in infants to study how the mind develops, to provide tools for earlier diagnosis in the neonatal intensive care unit and to inform the design of artificial neural networks. They have proposed frameworks on how to carve up cognition in building conceptual models of the mind. Psychologists have reviewed publications and have given more than 150 invited presentations to psychology, developmental, and neuroscience conferences, including as a keynote speaker at major meetings in Japan, the US, and Europe, and more than 50 specialist workshops and departmental seminars.

His team at Trinity College uses neuroimaging in infants to study how the mind develops, to provide tools for earlier diagnosis in the neonatal intensive care unit and to inform the design of artificial neural networks. They have proposed frameworks on how to carve up cognition in building conceptual models of the mind. Psychologists have reviewed publications and have given more than 150 invited presentations to psychology, developmental, and neuroscience conferences, including as a keynote speaker at major meetings in Japan, the US, and Europe, and more than 50 specialist workshops and departmental seminars.

His team at Trinity College uses neuroimaging in infants to study how the mind develops, to provide tools for earlier diagnosis in the neonatal intensive care unit and to inform the design of artificial neural networks. They have proposed frameworks on how to carve up cognition in building conceptual models of the mind. Psychologists have reviewed publications and have given more than 150 invited presentations to psychology, developmental, and neuroscience conferences, including as a keynote speaker at major meetings in Japan, the US, and Europe, and more than 50 specialist workshops and departmental seminars.